

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 6493-6496

Tetrahedron Letters

A new fluorescent as well as chromogenic chemosensor for anions based on an anthracene carbamate derivative

Qi-Yin Chen and Chuan-Feng Chen*

Laboratory of Chemical Biology, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China

> Received 19 April 2004; revised 21 June 2004; accepted 24 June 2004 Available online 19 July 2004

Abstract—A new fluorescent as well as chromogenic anion sensor, 1,8-anthradiol bis(*N*-phenylcarbamate) **2**, was synthesized. It exhibits new selective red-shifted absorption and fluorescence bands with F^- and AcO^- , which could be attributed to the anthracene moiety directly involved in the bonding interaction with the anions. © 2004 Elsevier Ltd. All rights reserved.

Anion recognition and sensing via synthetic receptors are of current interest in supramolecular chemistry¹ because of the important roles of anions in a wide range of chemical, biological, and environmental processes. Of particular interest in this regard are fluorescent sensors due to the high sensitivity and simplicity of fluorescence.^{2,3} In recent years, the development of colorimetric anion sensing is also particularly challenging.^{4,5}

Synthetic anion receptors⁶ are generally composed of binding sites and co-valently linked signaling subunit. Anion binding sites include not only positively charged guanidinium or ammonium based on electrostatic interactions, but also neutral H-bonding donor groups such as (thio)ureas, calix[4]pyrroles, porphyrins, or activated amides by formation of hydrogen bonds.⁷ In particular, amide NH groups are well-known to be involved in the anion binding of proteins⁸ and they have been widely used in developing anion receptors and sensors.

Since the first designed anion receptor containing anthracene was reported by Czarnik and co-workers^{9a} in 1989, fluorescent chemosensors for anions based on anthracene derivatives have attracted considerable attention.² In particular, anthrylpolyamines were used as photoinduced electron transfer (PET) sensors for phosphate and pyrophosphate in aqueous solution.⁹ Some anthracene-linked calix[4]pyrroles were designed and synthesized as new fluorescent sensors for anions.^{3a} Furthermore, Gunnlaugsson et al. reported for the first time the charge neutral anthracene based fluorescent PET sensors for anions in 2001.¹⁰ Recently, Kim and Yoon reported a fluorescent PET chemosensor for fluoride ions based on a bis-urea anthracene derivative.^{3d} Here, we report a new fluorescent as well as chromogenic anion sensor, 1,8-anthradiol bis(N-phenylcarbamate) 2, which exhibits red-shifted fluorescent and absorption bands in the presence of F⁻ and AcO⁻. Although this unique fluorescent and absorption behavior was recently found in a naphthalene urea system used as a fluoride selective chemosensor,^{3e} to the best of our knowledge, it has not been reported in the designed fluorescent chemosensors for anions based on the anthracene. Moreover, our system also displays a high selective recognition with F⁻ and AcO⁻ over other anions examined as H₂PO₄⁻, Cl⁻, Br⁻, I⁻, and HSO₄⁻.

The chemosensor **2** was readily synthesized from the 1,8dimethoxylanthracene **1a**.¹¹ Thus, **1a** was treated with BBr₃ in CH₂Cl₂ to give 1,8-anthradiol **1b**, which was reacted with phenyl isocyanate in the presence of dibutyl tin diacetate (DBTDA) to afford the product **2** in 81% yield (Scheme 1).¹²

As shown in Figure 1, the characteristic absorption bands of 2 due to the anthracene moiety considerably decrease while a new red-shifted band around 406 nm appears in the presence of fluoride ion. This indicates the complex formation. AcO^- induced almost same spectral changes of 2 as F^- did. In the case of

Keywords: Anions; Fluorescent chemosensor; Anthracene; Carbamate. * Corresponding author. Tel.: +86-10-62588936; fax: +86-10-

^{62554449;} e-mail: cchen@iccas.ac.cn

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.06.135

Scheme 1. Synthesis of compound 2.

Figure 1. Absorption changes of 2 $(100 \mu M)$ upon the addition of tetrabutylammonium anion salts (0.6 equiv) in MeCN/DMSO (98:2, v/v).

 $H_2PO_4^-$, however, only little changes in the absorption spectrum of **2** took place. Furthermore, no obvious spectral changes were observed even in the presence of 100 equiv of Cl⁻, Br⁻, I⁻, and HSO₄⁻. It was noteworthy that F⁻, AcO⁻, and H₂PO₄⁻ of 10 equiv each could induce significant color changes of the solutions of **2** (100 µM) in MeCN/DMSO (98:2, v/v) from deep yellow to yellow to light yellow, respectively. Meanwhile, other anions including Cl⁻, Br⁻, I⁻, and HSO₄⁻ caused no color changes in the same conditions. Thus, **2** could be considered as a potential 'naked-eye' chemosensor for F⁻, AcO⁻, and also H₂PO₄⁻.

Same tendency was observed in the fluorescence spectra of 2. As shown in Figure 2, receptor 2 displayed a typical anthracenic emission in the absence of fluoride ion, which gradually decreased as the concentration of fluoride ion increased. Particularly, a new red-shifted band yielding the composite spectrum with λ_{max} at ~445 nm was observed upon addition of the fluoride. This unique fluorescence behavior¹³ implied that anthracene moiety could be directly involved in the bonding interaction with the fluoride ion along with the formation of fluorescing complex. In the case of AcO⁻, similar spectral changes were observed (Fig. 3). However, when the concentration of AcO⁻ increased to about 2.5 equiv, further addition of AcO⁻ induced only a nominal change in the fluorescence intensity. From the fluorescence titration experiments, the association constants¹⁴ for the fluoride and acetate were calculated to be 1.55×10^5 and $3.6 \times 10^5 \,\mathrm{M}^{-1}$, respectively.

In the other anions examined, $H_2PO_4^-$ was found to induce smaller spectral changes¹⁵ than those for F^- and

Figure 2. Fluorescent titrations of **2** (1 μ M) with Bu₄N⁺F⁻ in MeCN/ DMSO (98:2, v/v), λ_{ex} =364 nm. From a to f, [F⁻]: 0, 1, 2, 3, 4, 5 μ M; Inset: the plot of $I_0/(I-I_0)$ versus 1/[F⁻].

Figure 3. Fluorescent titrations of 2 (1 μ M) with Bu₄N⁺AcO⁻ in MeCN/DMSO (98:2, v/v), $\lambda_{ex} = 364$ nm. From a to f, [AcO⁻]: 0, 0.5, 1, 1.5, 2, 2.5 μ M. Inset: the plot of $I_0/(I - I_0)$ versus 1/[AcO⁻].

AcO⁻. In the cases of Cl⁻, Br⁻, I⁻, and HSO₄⁻, no obvious spectral changes of **2** were observed. Even in the presence of large excess of the anions (up to 1000 equiv each), only very little fluorescence quenching of **2** observed. Although no obvious selectivity between F⁻ and AcO⁻ was found, **2** showed very high sensitivity and selectivity toward F⁻ and AcO⁻ over other anions examined. This selectivity may be due to high charge density and small size of F⁻ and AcO⁻, which enables them to be strong hydrogen binding acceptor to interact with the receptor **2**.

To look into the anion binding properties of receptor 2, NMR experiments in DMSO- d_6 were performed. Figure 4 shows a partial ¹H NMR spectrum of 2, each peak was assigned according to its ¹H–¹H COSY spectrum. Upon the addition of 1 equiv F⁻, dramatic changes occurred in the ¹H NMR spectrum of 2. Firstly, the NH protons broadened and shifted downfield signal to ~11.2 ppm. Upon the addition of 2 equiv F⁻, the NH signal was not observed (Fig. 4c). Meanwhile, the H_h proton signal at the 9-position of anthracene moiety shifted downfield ($\Delta \delta$ = +0.25 ppm), which indicated that the fluoride ion

Figure 4. Partial ¹H NMR (300 MHz) of **2** (1mM) in DMSO- d_6 . (a) Compound **2** only; (b) **2**+1 equiv of n-Bu₄N⁺F⁻; (c) **2**+2 equiv of n-Bu₄N⁺F⁻; (d) **2**+1 equiv of n-Bu₄N⁺AcO⁻. The numbering of protons is given in Scheme 2.

Scheme 2. Proposed binding mode of 2 with F⁻ and AcO⁻.

has a strong hydrogen bonding interaction not only with the protons of the amide, but also with the H_h proton (Scheme 2). The interaction between H_h and the fluoride ion may also be an example of Caromatic-H hydrogen bonding. On the other hand, H_c and H_d protons at the *ortho* position to carbamate group showed a significant upfield shift ($\Delta \delta = -0.95$ and -0.71 ppm, respectively) upon the addition of F^- . It implied that there is no hydrogen bonding interaction between H_c/H_d and the oxygen in the carbonyl groups, which would induce the H_c/H_d proton signals to shift downfield. Moreover, the other aromatic proton signals shifted moderate upfield ($\Delta \delta = -0.30$ to -0.70 ppm). These facts could be the result of the enhanced resonance of anthracene and phenyl electrons from anionic character of carbamate nitrogen and oxygen.^{3f} In the case of the acetate, the spectral changes of 2 and binding mode of 2 with AcO⁻ were similar to those for the fluoride, which is consistent with the results of the above fluorescent and chromogenic methods.

In summary, we have presented a new fluorescent as well as chromogenic anion chemosensor **2**, which showed high sensitivity and selectivity toward F^- and $AcO^$ over other anions including $H_2PO_4^-$, Cl^- , Br^- , I^- , and HSO_4^- . In particular, the appearance of new red-shifted fluorescence and absorption bands in the presence of $F^$ and AcO^- , which could be attributed to the anthracene moiety directly involved in the hydrogen bonding interaction with the anions, providing a great advantage for the detect of those anions.

Acknowledgements

We thank the Chinese Academy of Sciences, the National Natural Science Foundation of China and the Ministry of Science and Technology of China (No. 2002CCA03100) for financial support.

References and notes

- (a) Comprehensive Supramolecular Chemistry; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vogtle, F., Lehn, J.-M., Eds.; Elsevier: Amsterdam, 1996; (b) Supramolecular Chemistry of Anions; Bianchi, A., James, K. B., Garcia-EspanÄa, E., Eds.; Wiley-VCH: New York, 1997.
- 2. Martinez-Manez, R.; Sancenon, F. *Chem. Rev.* 2003, *103*, 4419–4476, and references cited therein.
- 3. Some fluorescent chemosensors for $F^$ and AcO⁻: (a) Miyaji, H.; Anzenbacher, P., Jr.; Sessler, J. L.; Bleasdale, E. R.; Gale, P. A. Chem. Commun. 1999, 1723–1724; (b) Anzenbacher, P., Jr.; Jursikova, K.; Sessler, J. L. J. Am. Chem. Soc. 2000, 122, 9350-9351; (c) Cooper, C. R.; Spencer, N.; James, T. D. Chem. Commun., 1998, 1365-1366; (d) Kim, S. K.; Yoon, J. Chem. Commun., 2002, 770–771; (e) Cho, E. J.; Moon, J. W.; Ko, S.; Lee, J.; Kim, S. K.; Yoon, J.; Nam, K. C. J. Am. Chem. Soc. 2003, 125, 12376-12377; (f) Lee, J. Y.; Cho, E. J.; Mukamel, S.; Nam, K. C. J. Org. Chem. 2004, 69, 943–950; (g) Lee, D. H.; Im, J. H.; Lee, J.; Hong, J. Tetrahedron Lett. 2002, 43, 9637-9640; (h) Zhang, X.; Guo, L.; Wu, F.; Jiang, Y. Org. Lett. 2003, 5, 2667-2670; (i) Chen, C. F.; Chen, Q. Y. Tetrahedron Lett. 2004, 45, 3957-3960; (j) Nishizawa, S.; Kaneda, H.; Uchida, T.; Teramae, N. J. Chem. Soc., Perkin Trans. 2, 1998, 2325-2327.
- 4. Suksai, C.; Tuntulani, T. Chem. Soc. Rev. 2003, 32, 192–202.
- (a) Lavigne, J. J.; Anslyn, E. V. Angew. Chem., Int. Ed. 1999, 38, 3666–3669; (b) Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler, J. L. J. Am. Chem. Soc. 1999, 121, 10438–10439; (c) Miyaji, H.; Sessler, J. L. Angew. Chem., Int. Ed. 2001, 40, 154–157; (d) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2001, 123, 11372–11375.
- For recent reviews for anion receptors, see: (a) Choi, K.; Hamilton, A. D. Coord. Chem. Rev. 2003, 240, 101–110; (b) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486–516; (c) Antonisse, M. M. G.; Reinhoudt, D. N. Chem. Commun., 1998, 443–448; (d) Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609–1646; (e) Snowden, T. S.; Anslyn, E. V. Curr. Opin. Chem. Biol. 1999, 3, 740–746.
- (a) Bondy, C. R.; Loeb, S. J. Coord. Chem. Rev. 2003, 240, 77–99;
 (b) Amendola, V.; Fabbrizzi, L.; Mangano, C.; Pallavicini, P.; Poggi, A.; Taglietti, A. Coord. Chem. Rev. 2001, 219, 821–837.
- 8. He, J. J.; Quiocho, F. A. Science 1991, 251, 1479-1481.
- (a) Huston, M. E.; Akkaya, E. U.; Czarnik, A. W. J. Am. Chem. Soc. 1989, 111, 8735–8737; (b) Vance, D. H.; Czarnik, A. W. J. Am. Chem. Soc. 1994, 116, 9397–9398.
- 10. Gunnlaugsson, T.; Davis, A. P.; Glynn, M. Chem. Commun., 2001, 2556-2557.
- Lu, L. G.; Chen, Q. Y.; Zhu, X. Z.; Chen, C. F. Synthesis 2003, 2464–2466.
- 12. Compound **2**: ¹H NMR (300 MHz, DMSO- d_6 , ppm): δ 10.62 (s, 2H, NH), 8.82 (s, 1H), 8.71 (s, 1H), 8.09 (d, J=8.5 Hz, 2H), 7.61 (dd, J=7.4, 8.5 Hz, 2H), 7.45–7.50 (m, 6H), 7.29 (dd, J=7.4, 7.6 Hz, 4H), 7.06 (t, J=7.4 Hz, 2H); ¹³C NMR (75 MHz, DMSO- d_6 , ppm): δ 151.8, 146.1,

138.4, 132.3, 128.9, 128.8, 127.2, 126.0, 125.7, 123.1, 118.7, 118.4, 113.3; MALDI-TOF MS (m/z): 471 [M+Na]⁺; Anal. Calcd for C₂₈H₂₀O₄N₂·1/3H₂O: C, 74.00; H, 4.58; N, 6.16. Found: C, 73.86; H, 4.51; N, 6.04.

 Similar fluorescence behavior was observed in chelatoselective fluorescence perturbation with Cd(II), which was resulted from electrophilic aromatic cadmiation, see: (a) Huston, M. E.; Akkaya, E. U.; Czarnik, A. W. J. Am. Chem. Soc. 1990, 112, 7054–7056; (b) Choi, M.; Kim, M.; Lee, J.; Han, K.; Yoon, I.; Chung, H.; Yoon, J. Org. Lett. 2001, 3, 3455–3457.

- 14. (a) Schneider, H.-J.; Yatsimirsky, A. K. Principles and Methods in Supramolecular Chemistry; John Wiley and Sons, 2000; (b) Cao, Y. D.; Zheng, Q. Y.; Chen, C. F.; Huang, Z. T. Tetrahedron Lett. 2003, 44, 4751–4755.
- 15. Because the complex stoichiometry between 2 and $H_2PO_4^-$ could not be determined, the association constant for dihydrogen phosphate was not available.